Self-Injection Locking of a Vortex Spin Torque Oscillator by Delayed Feedback

نویسندگان

  • Sumito Tsunegi
  • Eva Grimaldi
  • Romain Lebrun
  • Hitoshi Kubota
  • Alex S. Jenkins
  • Kay Yakushiji
  • Akio Fukushima
  • Paolo Bortolotti
  • Julie Grollier
  • Shinji Yuasa
  • Vincent Cros
چکیده

The self-synchronization of spin torque oscillators is investigated experimentally by re-injecting its radiofrequency (rf) current after a certain delay time. We demonstrate that the integrated power and spectral linewidth are improved for optimal delays. Moreover by varying the phase difference between the emitted power and the re-injected one, we find a clear oscillatory dependence on the phase difference with a 2π periodicity of the frequency of the oscillator as well as its power and linewidth. Such periodical behavior within the self-injection regime is well described by the general model of nonlinear auto-oscillators including not only a delayed rf current but also all spin torque forces responsible for the self-synchronization. Our results reveal new approaches for controlling the non-autonomous dynamics of spin torque oscillators, a key issue for rf spintronics applications as well as for the development of neuro-inspired spin-torque oscillators based devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved X-ray Imaging of Spin-torque-induced Magnetic Vortex Oscillation a Dissertation Submitted to the Department of Applied Physics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

The spin transfer phenomenon provides a new method to manipulate magnetization without applying an external magnetic field and a new playground to study the spin degree of freedom of electrons. Two types of magnetic dynamics excited by the spin transfer torque from a direct current were predicted in 1996: magnetization reversal and steady-state precession. The physics of spin-torque-induced mag...

متن کامل

The Transient Behavior of LC and Ring Oscillators under External Frequency Injection

 In this work, time domain analysis is used to solve Adler’s equation in order to obtain the required time, for an oscillator under external injection, reaching the steady-state condition. Mathematical approach has been applied to fully describe the transient of frequency acquisition in injection-locked LC and Ring oscillators considering their time-varying nature. Then, the analysis is verifie...

متن کامل

Optical and X-ray Measurement of Magnetization Dynamics Induced by Spin Currents

Pure spin currents provide new opportunities for the construction of energy efficient electronic devices with novel functionality. In particular, spin currents are able to control the magnetization of ferromagnetic materials that are inherently bistable, and therefore ideally suited to memory and logic applications, or capable of sustained oscillation at microwave frequencies. However, present ...

متن کامل

Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current

We investigate analytically and numerically nonlinear vortex spin torque oscillator dynamics in a circular magnetic nanodot induced by a spin-polarized current perpendicular to the dot plane. We use a generalized nonlinear Thiele equation including spin-torque term by Slonczewski for describing the nanosize vortex core transient and steady orbit motions and analyze nonlinear contributions to al...

متن کامل

Images of a spin-torque-driven magnetic nano-oscillator.

We present the first space- and time-resolved images of the spin-torque-induced steady-state oscillation of a magnetic vortex in a spin-valve nanostructure. We find that the vortex structure in a nanopillar is considerably more complicated than the 2D idealized structure often-assumed, which has important implications for the driving efficiency. The sense of the vortex gyration is uniquely dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016